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Abstract The impact of a rigid body upon an elastic isotropic plate is investigated for the case when the
equations of motion take rotary inertia and shear deformation into account. The impactor is considered
as a mass point, and the contact between it and the plate is established through a buffer involving a linear-
spring–fractional-derivative dashpot combination, i.e., the viscoelastic features of the buffer are described
by the fractional-derivative Maxwell model. It is assumed that a transient wave of transverse shear is gen-
erated in the plate, and that the reflected wave has insufficient time to return to the location of the spring’s
contact with the plate before the impact process is completed. To determine the desired values behind the
transverse-shear wave front, one-term ray expansions are used, as well as the equations of motion of the
impactor and the contact region. As a result, we are led to a set of two linear differential equations for the
displacements of the spring’s upper and lower points. The solution of these equations is found analytically
by the Laplace-transform method, and the time-dependence of the contact force is obtained. Numerical
analysis shows that the maximum of the contact force increases, tending to the maximal contact force when
the fractional parameter is equal to unity.

Keywords Fractional-derivative viscoelasticity · Ray method · Shock interaction

1 Introduction

Phillips and Calvit [1] were probably the first to investigate the response of a viscoelastic infinitely extended
plate to impact of a rigid sphere. They used the Hertz’s contact law in its hereditary form [2]. This problem
is an immediate extension of Zener’s approach [3] for the dynamic rigid spherical-indenter problem for
the case of a thin elastic plate.
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The other approach to the problem, when viscosity is included during impact, is based on replacing
Hertz’s contact equation by the Maxwell equation connecting the contact force with the deformation of
a viscoelastic element located between the impactor and the target. This approach was implemented by
Hammel [4] for the analysis of aircraft impact on a spherical shell. The following calculation scheme has
been used: an impactor moves along the normal to the shell’s median surface, and a viscoelastic buffer
involving an elastic spring and a dash-pot connected in series, whose one end is connected with the impac-
tor, impacts via its other end upon the shell. Timoshenko’s approach [5] was used for solving the problem in
[4], since the shell was of finite dimensions. Senitskii [6] generalized Hammel’s statement of the problem,
taking the local bearing of the shell and the impactor materials into account. In both papers [4,5] the
behavior of the shell is described by a classical set of equations.

It should be noted that linearization of the contact deformation is often used for investigating shock
interactions of solids. Thus, Conway and Lee [7] considered the impact between an indenter and a large
elastic plate through a linear spring, investigating the mechanics of a printing process. Qian and Swanson [8]
and Chirtoforou and Swanson [9], analyzing the impact response in composite plates, used a linear spring
acting between the impactor and the plate centerline deflection to represent the linearized Hertzian contact
deformation. This allowed the authors to solve the problem analytically via Laplace transformation of the
governing differential equations. It has been shown [10] that the use of a linear contact stiffness is useful
in the identification of the key impact parameters. A comparison of this approach with the Rayleigh–Ritz
technique, with finite-element calculations and experimental measurements has been carried out [8], and
the range of the numerical parameters required to give good accuracy of the solution has been determined.

Problems of impact interaction of viscoelastic bodies with the use of rheological models involving frac-
tional derivatives came under scientific scrutiny rather long ago. The first of such papers was published in
1972 by Gonsovskii et al. [11], who investigated the impact of a viscoelastic rod, the hereditary features
of which were described by a fractional derivative standard linear solid model, against a rigid barrier. The
rheological model was written in an equivalent form in terms of Boltzmann–Volterra relationships with a
fractional exponent [12] as a weakly singular hereditary kernel. This problem was reviewed in the state-
of-the-art article [13], which summed up the developments in fractional-calculus hereditary mechanics up
to 1997.

Recently, interest in problems of shock interaction of viscoelastic bodies via models involving fractional
derivatives and fractional integrals has been rekindled. Rossikhin and Shitikova [14] have generalized the
problem [11] using the rod’s model containing fractional derivatives of two different orders.

Quasi-static spherical indentation into a viscoelastic half-plane was considered in [15], wherein the
shear modulus of the compressed material entering in the Hertz contact law was introduced in terms of a
fractional differential operator with a time-dependent fractional parameter.

Atanackovic and Spasic [16] analyzed shock interaction of an impactor with a rigid target. The behavior
of a viscoelastic buffer, clamped by its one end to the impactor, was described by a fractional-derivative
standard linear solid model. The problem was reduced to investigating short-time vibrations of an oscillator
occurring in a time interval equal to a half-period of vibrations, i.e., the duration of contact between the
impactor and the rigid target.

Atanakovic et al. [17] investigated unilateral contact of a viscoelastic rod with a rigid wall. The rod was
assumed to be massless, while the body attached to its end possessed mass. The viscoelastic properties of
the rod were described by the fractional-derivative standard linear solid model. Restrictions on the model’s
parameters implied that the velocity after impact is smaller than before impact.

In this paper, a fractional-derivative viscoelastic model of the shock interaction of a rigid body with
a plate is proposed, according to which the rigid body (impactor) impacts an upper end of a viscoelas-
tic buffer, whose lower end is embedded into a thin body (target). As a target a non-classical plate is
used, whose dynamic behavior is described by equations taking the rotary inertia and transverse shear
deformations into account. The behavior of the buffer is described by the fractional-derivative Maxwell
model.
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Fig. 1 Scheme of the shock interaction of a rigid body and a buffer embedded in an Uflyand–Mindlin plate. (a) Before
interaction, (b) during interaction and (c) a plan view

2 Problem formulation and governing equations

A body with mass m moves with a velocity V0 along the normal to the center of a circular plate and impacts
upon the upper end of a viscoelastic buffer involving a viscous damper and an elastic cylindrical spring
of radius r0, which is embedded in an elastic isotropic plate of thickness h (Fig. 1). At the moment of
impact, shock waves are generated in the plate, which then propagate along the plate with the velocities of
transient elastic waves.

Further we shall assume that during the impact process transverse forces and transverse shear defor-
mations predominate in the plate’s stressed-deformed state in the vicinity of the contact spot (the region
of plate and buffer contact). Moreover, the plate is rather wide such that reflected waves are not allowed
sufficient time to return to the location of the buffer’s contact with the plate before the completion of the
impact process.

The behavior of a plate of the Uflyand–Mindlin type behind the fronts of the shock waves without the
extension of its middle surface taken into account, is described by the following set of equations:

∂Qr

∂r
+ 1

r
Qr = ρhẆ, Q̇r = Kµh

(
∂W
∂r

− Br

)
, (1a, b)

1
r

(
Mr − Mϕ

) + ∂Mr

∂r
+ Qr = ρh3

12
Ḃr, Ṁr = D

(
∂Br

∂r
+ σ

Br

r

)
, Ṁϕ = D

(
Br

r
+ σ

∂Br

∂r

)
, (2a, b, c)

where r and ϕ are the polar radius and angle, respectively, Mr and Mϕ are the bending moments, Qr is
the shear force, Br is the angular velocity of rotation of the normal to the plate’s middle surface in the
r-direction, W = ẇ is the deflection velocity, D is the cylindrical rigidity, ρ is the density, K is the shear
coefficient, µ is the shear modulus, σ is Poisson’s ratio, and an overdot denotes the time derivative.
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The equation of motion of the impactor

m(α̈ + ẅ) = −F, (3)

and that of the contact spot (the location where, the buffer is embedded in the plate), which is considered
to be a rigid body,

ρhπr2
0ẅ = −2πr0Qr|r=r0 + F, (4)

where α and w are the displacements of the upper and lower points of the buffer, respectively, and F is the
contact force, should be added to (1) and (2).

The contact force F is connected with the difference in displacements of the buffer’s upper and lower
ends by the generalized Maxwell law with the Riemann–Liouville derivative

F + τγε DγF = E1τ
γ
ε Dγ (α − w) , (5)

where τε is the relaxation time, γ (0 < γ ≤ 1) is the fractional parameter, E1 is the elastic coefficient of the
spring, and

DγF = d
dt

∫ t

0

F
(
t − t′

)

 (1 − γ ) t′γ

dt′. (6)

The initial conditions

α|t=0 = w|t=0 = ẇ|t=0 = 0, α̇|t=0 = V0 (7)

should be added to Eqs. 1–5.

3 Method of solution

The methods applied for solving the given problem within and outside the contact region are different.
The ray method is used outside the contact spot, but the Laplace-transform method is applied within the
contact region.

3.1 The ray method

Let us begin with the ray method. For this purpose, we shall interpret a shock wave in the plate (surface
of strong discontinuity) as a layer of thickness δ within which the desired function Z changes from the
magnitude Z− to the magnitude Z+ but remaining a continuous function. Then integrating (1) and (2)
over the layer’s thickness from −δ/2 to δ/2, with δ tending to zero, and considering that inside the layer
the condition of compatibility [18] is fulfilled in the form of

Ż = −G
∂Z
∂r

+ δZ
δt

, (8)

where G is the normal velocity of the wave surface, and δ/δt is the δ-derivative with respect to time, we
find the dynamic compatibility conditions

[Qr] = −ρhG[W], −G[Qr] = Kµh[W], (9a, b)

[Mr] = −ρh3

12
G[Br], −G[Mr] = D[Br], (10a, b)

where [Z] = Z+ − Z−.
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Eliminating the values [Qr] and [Mr] from (9) and (10), respectively, we define the velocities of the
quasi-transverse G(2) and quasi-longitudinal G(1) waves as follows:

G(2) =
(

Kµ
ρ

)1/2

, G(1) =
(

E
ρ(1 − σ 2)

)1/2

, (11)

where E is Young’s modulus.
If the contact spot is considered to be a rigid body, then the values Qr and W, which are connected by

the relationship

Qr = −ρG(2)hW, (12)

are the dominating values in the vicinity of the contact spot and on its boundary.

3.2 Laplace-transform method

Substituting (12) in (4) and applying the Laplace transform to Eqs. 3 and 4 with due account for (5)–(7)
yields

p2m (ᾱ + w̄) = − (pτε)γ

1 + (pτε)γ
E (ᾱ − w̄)+ V0m, Mp2w̄ = −MBpw̄ + (pτε)γ

1 + (pτε)γ
E (ᾱ − w̄) , (13a, b)

where p is the transform parameter, M = ρπr2
0h, B = 2r−1

0 G(2), and an overbar denotes the Laplace
transform of the given function.

Solving (13a, b) we find

ᾱ = V0
p2 + p2−γ ς + Bp + Bςp1−γ + A

pfγ (p)
, w̄ = V0

A
pfγ (p)

, (14a, b)

fγ (p) = p3 + p3−γ ς + Bp2 + Bςp2−γ + Cp + BC0, (15)

where ς = τ
−γ
ε , A = E1M−1, C = E1

(
2M−1 + m−1), and C0 = E1m−1.

Substituting the values (14) in the expression for the contact force

F̄(p) = (pτε)γ

1 + (pτε)γ
E1(ᾱ − w̄), (16)

we have

F̄(p) = E1V0
p + B
fγ (p)

. (17)

For γ = 1 the function fγ (p) in (17) should be replaced by

f1(p) = p3 + (ς + B)p2 + (C + Bς)p + BC0, (18)

where ς = τ−1
ε . In the elastic case (ς = 0), the functions fγ (p) and f1(p) coincide, i.e.,

fγ (p) = f1(p) = p3 + Bp2 + Cp + BC0. (19)

If the impactor’s mass m is far less than the mass of the contact spot M (C ≈ C0) or if the buffer is
embedded in an absolutely rigid plate (w = 0), then (17) takes the form

F̄(p) = E1V0

p2 + ςp2−γ + C0
. (20)

The force F(t) in the time domain is defined by the Mellin–Fourier inverse formula

F(t) = 1
2π i

∫ c+i∞

c−i∞
F̄(p) exp(pt)dp. (21)
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Fig. 2 Contour of
integration

To calculate the integral in (21), it is necessary to determine all singular points of the complex function
F̄(p). This function possesses the branch points p = 0 and p = ∞ and simple poles for those values of
p = pk for which the denominator of (17) vanishes, i.e., which are the roots of the characteristic equation

fγ (p) = 0. (22)

For multivalued functions possessing branch points, the inverse theorem is valid only for the first sheet
of the Riemannian surface, i.e., for 0 < | arg p| < π . Therefore the closed contour of integration should be
chosen in the form shown in Fig. 2. By Jordan’s lemma and application of the main theorem of the residue
theory, the relationship for the contact force can be written as

F(t) = 1
2π i

∫ ∞

0

[
F̄

(
se−iπ ) − F̄

(
seiπ )]

e−stds +
∑

k

res
[
F̄ (pk) epkt], (23)

where the summation is taken over all isolated points (poles).
It can be shown that (22) lacks real negative roots. Really, putting p = −y, y > 0, and separating real

and imaginary parts, we obtain

− y3 + By2 − Cy + BC0 − y3−γ ς cosπγ + Bςy2−γ cosπγ = 0, y2−γ (y − B) ς sin πγ = 0. (24a, b)

From (24b) we find that y = B, and substituting the value of y obtained from (24a), we are led to the
conflicting equality B (C0 − C) = 0.

To find the complex conjugate roots of Eq. 22, we insert p = reiψ in it. Then, separating the real and
imaginary parts, we obtain a set of two equations

r3 [
cos 3ψ + x cos (3 − γ )ψ

] + r2B
[
cos 2ψ + x cos (2 − γ )ψ

] + Cr cosψ + BC0 = 0, (25a)

r2 [
sin 3ψ + x sin (3 − γ )ψ

] + rB
[
sin 2ψ + x sin (2 − γ )ψ

] + C sinψ = 0, (25b)

where x = ςr−γ .
From (25b) we find the value of r, namely

r = −B
[
sin 2ψ + x sin(2 − γ )ψ

] ±
√

B2
[
sin 2ψ + x sin(2 − γ )ψ

]2 − 4
[
sin 3ψ + x sin(3 − γ )ψ

]
C sinψ

2
[
sin 3ψ + x sin(3 − γ )ψ

] .

(26)

Then substituting r from (26) in Eq. 25a, we obtain for each fixed magnitude of the angle ψ the equation in
the real positive value of x (0 < x < ∞). Knowing the value of x, we define r from (26) for the same fixed
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angle ψ and, finally using the connection between the values x, r and ς , we find

ς = xrγ . (27)

For the characteristic equation

p2 + ςp2−γ + C0 = 0, (28)

which enters into (20), Eqs. 25 take the form

r2 cos 2ψ + ςr2−γ cos (2 − γ )ψ + C = 0, r2 sin 2ψ + ςr2−γ sin (2 − γ )ψ = 0. (29a, b)

From Eqs. 29 we find for each fixed magnitude of the angle ψ

r2 = C
sin (2 − γ )ψ

sin γψ
, ς = − rγ sin 2ψ

sin (2 − γ )ψ
. (30a, b)

Calculations show (see Sect. 4) that both Eqs. 22 and 28 possess two complex conjugate roots for any
magnitudes of γ (0 < γ < 1) and ς (0 < ς < ∞).

Since the roots of the characteristic equation (22) are the complex conjugates p = re±iψ = −α± iω, the
relationship (23) can be written as

F(t) = A0(t)+ A exp(−αt) cos(ωt + ϕ), (31)

where

A0(t) = V0E1

π

∫ ∞

0

(s − B)Imfγ (se−iπ )e−st

[
Refγ (se−iπ )

]2 + [
Imfγ (se−iπ )

]2 ds,

Refγ (se−iπ ) = −s3 − s3−γ ς cosπγ + Bs2 + s2−γBς cosπγ − Cs + BC0,

Imfγ (se−iπ ) = s2−γ sin πγ (B − s)ς ,

A=
2E1V0

√{
(B+r cosψ)Ref ′

γ (reiψ)+r sinψImf ′
γ (reiψ)

}2+
{

r sinψRef ′
γ (reiψ)−(B+r cosψ)Imf ′

γ (reiψ)
}2

[
Ref ′

γ (reiψ)
]2 +

[
Imf ′

γ (reiψ)
]2

tan ϕ = r sinψRef ′
γ

(
reiψ) − (B + r cosψ) Imf ′

γ

(
reiψ)

(B + r cosψ)Ref ′
γ

(
reiψ

) + r sinψImf ′
γ

(
reiψ

) ,

Ref ′
γ

(
reiψ) = 3r2 cos 2ψ + (3 − γ ) r2−γ ς cos (2 − γ )ψ + 2Br cosψ + (2 − γ )Bςr1−γ cos (1 − γ )ψ + C,

Imf ′
γ

(
reiψ) = 3r2 sin 2ψ + (3 − γ ) r2−γ ς sin (2 − γ )ψ + 2Br sinψ + (2 − γ )Bςr1−γ sin (1 − γ )ψ .

The first term in (31) defines the drift of the equilibrium position, but the second describes damped
vibrations around the drifting position of equilibrium. The vibratory process will cease when F(t) vanishes,
as the impactor then bounces back from the buffer.

When γ = 1, the first term in (31) becomes extinct, and a damping exponent, which corresponds to a
real negative root of the characteristic equation

f1(p) = 0, (32)

emerges instead; in so doing, the second term remains only in the region of vibratory motions, but in the
domain of aperiodic motions the sum of two damping exponents appears in its place. Therefore for γ = 1,
the impactor may adhere to the buffer for certain values of τ .

Thus, for γ = 1, within the region of vibrations, we have

F(t) = de−βt + Aω−1e−αt sin (ωt − ϕ) , (33a)
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where p3 = −β is the real negative root of Eq. 32, and p1,2 = −α± iω are its two complex conjugate roots,

d = E1V0
B − β

β2 − 2αβ + α2 + ω2 , A = E1V0

√
a2ω2 + (αa − b)2,

tan ϕ = aω
αa − b

, a = −d, b = 1 − aβ − 2αd.

For γ = 1, within the region of aperiodicity, we have

F(t) = (
a1e−α1t + b1e−β1t + d1e−γ1t) E1V0, (33b)

where p1 = −α1, p2 = −β1, and p3 = −γ1 are the real negative roots of Eq. 32,

a1 = B − α1

(β1 − α1) (γ1 − α1)
, b1 = B − β1

(α1 − β1) (γ1 − β1)
, d1 = B − γ1

(α1 − γ1) (β1 − γ1)
.

In the elastic case (ς = 0), the characteristic equation,

p3 + Bp2 + Cp + BC0 = 0, (34)

has one real negative root p3 = −β0 and two purely imaginary roots p1,2 = ±iω0. Therefore the expression
for F(t) has the form

F(t) = d0e−β0t + e0ω
−1
0 sin (ω0t − ϕ0) , (35)

where d0 = E1V0
B−β 0
β2

0 +ω2
0
, e0 = E1V0

√
a2

0ω
2
0 + b2

0, a0 = −d0, and b0 = 1 − a0β0.

For C = C0, the roots of Eq. 34 are of the form p3 = −B, p1,2 = ±i
√

C0. If the contact force in the
Laplace domain is governed by (20), then the values entering in (31) are defined in the time domain as
follows

A0(t) =
∫ ∞

0

1
τ

Aε (τ , τε) e−t/τdτ ,

Aε (τ , τε) = V0E1 sin πγ

π

τ
(
1 + τ 2C0

)−1

(τ/τε)
−γ (

1 + τ 2C0
) + (τ/τε)

γ
(
1 + τ 2C0

)−1 + 2 cosπγ
,

(36)

A = E1V0r−1
[
4 + ς2 (2 − γ )2 r−2γ + 4r−γ ς (2 − γ ) cos γψ

]−1/2
,

tan ϕ = − 2r sinψ + ς (2 − γ ) r1−γ sin (1 − γ )ψ

2r cosψ + ς (2 − γ ) r1−γ cos (1 − γ )ψ
.

4 Numerical analysis

As an example, consider the impact of rigid body (Fig. 1) moving with a velocity V0 = 10 m/s at the moment
of impact upon a plate of thickness h = 0.1 m with the embedded buffer having a radius r0 = 0.1 m and the
spring’s rigidity being E1 = 252.53 kN/m. The material of the plate possesses the following characteristics:
E = 200 GPa, σ = 0.3, and ρ = 7850 kg/m3.

To investigate the ς -dependence of the behavior of the roots of Eqs. 22 and 28, let us reduce it to
dimensionless form, respectively, as

f ∗
γ (p

∗) = p∗3 + ς(BC0)
−γ /3(p∗)3−γ + B2/3C−1/3

0 p∗2 + ς(BC0)
(2−γ )/3(p∗)2−γ + C(BC0)

−2/3p∗ + 1 = 0,

(37)

where p∗ = p(BC0)
−1/3, and
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Fig. 3 Roots of the
characteristic equations:
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f ∗
γ (p

∗) = p∗2 + ςC−γ /2
0 (p∗)2−γ + 1 = 0, (38)

where p∗ = pC−1/2
0 .

As has been shown above, these equations possess only two complex conjugate roots for γ �= 1 and
ς �= 0, whose behavior as a function of the parameter ς is presented in the complex plane p∗ (see Fig. 3) for
the following values: C/C0 = 1 (dashed lines) and C/C0 = 41.55 (solid lines). The values of the parameter
γ are indicated by numbers near the curves. It is seen that, for C = C0, all the roots of (38) emanate from
0 for ς = ∞ and for ς = 0 come to the points that are aligned with the imaginary axis. For C �= C0 all
roots emanate from 0 for ς = ∞ and for ς = 0 come to the points that are not aligned with the imaginary
axis, but are the complex roots of Eq. 37. Reference to Fig. 3 shows also that, for γ �= 1, the roots of
these characteristic equations do not intersect the real negative semi-axis for any values of the parameter
ς , i.e., for γ �= 1 these equations lack the domain of aperiodicity. For γ = 1 two complex conjugate roots
intersect the real negative semi-axis and, starting from this value of ς , this characteristic equation possesses
three real negative roots that govern the aperiodic motion of the system, resulting in an infinitely large
duration of the contact between the impactor and the buffer. When C → C0, solid lines go over into the
corresponding dashed lines.

The time-dependence of the contact force is shown for C = C0 and C �= C0, respectively, in
Figs. 4 and 5, which corresponds to an impactor’s mass of 1 and 500 kg, respectively, for the following
values of the fractional parameter: γ = 1 (Figs. 4a and 5a), γ = 0.9 (Figs. 4b and 5b), γ = 0.7 (Figs. 4c
and 5c), and γ = 0.5 (Figs. 4d and 5d). The values of the relaxation time τε are indicated in the figure
captions. It is seen that, for each fixed value of γ , the maximum of the contact force decreases when the
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Fig. 6 The time dependence of the contact force for C =
C0 for fixed values of the relaxation time: (a) τε = 0.002 s,
(b) τε = 0.001 s, and (c) τε = 0.0001 s, γ = 1 —–, γ = 09
- - - -, γ = 0.7 ....., γ = 0.5 -. -. -.

0.3

20

0.20.10 t, (s)

40

60

F(t),
(kN)

0.3

20

0.20.10 t, (s)

40

60

F(t),
(kN)

0.3

20

0.20.10 t, (s)

40

60

F(t),
(kN)

(a)

(b)

(c)

Fig. 7 The time dependence of the contact force for C �=
C0 for fixed values of the relaxation time: (a) τε = 0.002 s,
(b) τε = 0.001 s, and (c) τε = 0.0001 s, γ = 1 —–, γ = 0.9
- - - - , γ = 0.7 ....., γ = 0.5 -. -. -. -.

relaxation time decrease, but the duration of contact increases. Starting from a value τε = 0.001 s in the
case of C = C0 and τε = 0.023 in the case of C �= C0, respectively, the contact duration becomes infinitely
large.
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Table 1 The rebound
velocity of the sphere V∗
depending on the
relaxation time τε and the
fractional parameter γ for
m = 1 kg

τε γ

1.0 0.9 0.7 0.5

2 × 10−3 1.9 2.3 2.5 3.0
1 × 10−3 2.5 3.5 4.0 4.5
1 × 10−4 3.75 4.5 5.0 6.25

Table 2 The rebound
velocity of the sphere V∗
depending on the
relaxation time τε and the
fractional parameter γ for
m = 500 kg

τε γ

1.0 0.9 0.7 0.5

2 × 10−3 1.81 2.1 2.4 2.8
1 × 10−3 2.05 2.18 2.63 2.92
1 × 10−4 2.2 2.4 2.8 3.1

Figures 6 and 7 show the time-dependence of the contact force for C = C0 and C �= C0, respectively, for
fixed values of the parameter τε, while the fractional parameter γ plays the role of a variable. A comparison
of the curves depicted in Figs. 6 and 7 shows that all curves experience “smearing” when the fractional
parameter γ is decreased, i.e., its value influences both the maximal magnitude of the contact force and the
contact duration. As this takes place, when γ �= 1, the duration of contact remains finite for any value of τε.

When Figs. 4 and 5 are compared with Figs. 6 and 7, it is clear that the relaxation time and the fractional
parameter have the same influence on the behavior of the curves for the time dependence of the contact
force.

Reference to Figs. 4–7 shows that the contact duration is of the order of 10−2 s (Figs. 4 and 6) or 10−1 s
(Figs. 5 and 7) depending on an impactor mass of m = 1 kg or m = 500 kg, respectively.

When the duration of contact t∗ between the sphere and the plate is known, it is possible to determine
the velocity V∗ at the end of impact, i.e., at the moment when the sphere bounces back off the plate.
Integrating (3) with respect to t from 0 to t∗ yields

V∗ = V0 − 1
m

∫ t∗

0
F(t)dt. (39)

Equation 39 allows one to obtain the relaxation time τε and the dependence of the rebound velocity V∗ on
the fractional-parameter γ ; this is illustrated in Tables 1 and 2 using data presented in Figs. 6 and 7.

Reference to Tables 1 and 2 shows that a decrease in the relaxation time for fixed values of the fractional
parameter γ results in an increase of the velocity V∗ at the end of impact; a decrease in the fractional
parameter γ for fixed values of τε also causes V∗ to increase. In other words, the smaller the fractional
parameter γ is, the smaller the energy dissipation occurring during the process of impact will be. The
reason is that for γ → 0 the viscoelastic rheological model (5) goes over into an elastic model.

5 Conclusions

The problem considered here admits a more general treatment than the impact of a body upon a spring
with a damper embedded in a plate. This problem concerns the shock interaction of the impactor and
the target, wherein the generalized Maxwell law instead of the Hertz contact law is employed as a law of
interaction. Two parameters appear in this law: the relaxation time τε and the fractional parameter γ that
can be varied in order to match the theoretical results with experimental data.

It has been shown that both parameters affect the maximum value of the contact force and the contact
duration, namely: an increase in the parameters τε and γ results in a decrease of the maximum of the
contact force and in an increase in the contact duration. However, irrespective of τε, whose variation is
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primarily connected with a change in time, the variation of γ has other causes: X-ray radiation, electromag-
netic fields, and so on; for examples see [13]. Thus, the parameter γ could be considered as the structural
parameter responding to changes in the structure of the material on a molecular level.

The contact force is defined by two processes: the relaxation and the inertial processes. The first term
in Eq. 31 describes predominantly the relaxation process, while the second governs essentially the inertial
process. The character of the behavior of the contact force with time depends on the dominant factor
in the process. Due to the relaxation process, all curves depicting the time-dependence of the contact
force experience “smearing” with a decrease in the fractional parameter γ , i.e., its value influences both
the maximum value of the contact force and the contact duration. As this takes place, when γ �= 1, the
duration of contact remains finite for any values of τε.

Numerical investigation shows that the velocity of the impactor after impact is smaller than the velocity
before impact which is consistent with the physical nature of the interaction process under investigation.
As this takes place, a decrease in the relaxation time for a fixed value of the fractional parameter results
in an increase of the velocity at the end of impact, and a decrease in the fractional parameter for fixed
values of the relaxation time also causes the velocity at the moment of rebound to increase. In other words,
the smaller the fractional parameter is, the smaller the energy dissipation occurring during the impact
process will be. The reason is that for γ → 0 the rheological viscoelastic fractional-derivative model under
consideration goes over into an elastic model.
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